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Generalization of the Theta Methods of Convergence for 
Solving Distillation and Absorber-Type Problems 

J. R. HAAS, ALEJANDRO GOMEZ M.*, and C. D. HOLLAND 

TEXAS A&M UNIVERSITY 

COLLEGE STATION, TEXAS 77843 

DEPARTMENT OF CHEMICAL ENGINEERING 

Abstract 

An extension of the B methods of convergence wherein it is required that all 
terminal streams must satisfy simultaneously material balances, energy balances, 
and equilibrium relationships is presented. By use of this new convergence 
method, any distillation-type or absorber-type problem may be solved. The 
procedure has the flexibility of treating any column either as a single unit or a 
system of any number of subunits. The new procedure permits the direct 
solution of problems by use of the B methods which could not be solved by the 
original method. 

Applications of the f3 method to problems which differ from those 
considered previously are presented. First an extension of the original f3 
method is presented which makes it possible to solve distillation problems 
in which the reflux ratio and the boilup ratio, or the condenser duty and 
the reboiler duty, or combinations of these are specified in lieu of the reflux 
rate and the distillate rate. The technique used to solve these distillation 
problems is the same as that used to solve absorber problems in which the 
total flow rates and compositions of the lean gas and rich oil streams are 
to be determined when the inlet lean oil and rich gas streams are completely 
specified. A further extension of the new version of the 8 method permits 
any column to be solved as an equivalent system of any number of 
subunits. The formulations shown herein and the testing of these have 
thus far been for systems whose mixtures form ideal solutions. 

*Present address: Instituto Tecnologico Regional De Celaya, Mexico. 
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2 HAAS, GOMEZ M., AND HOLLAND 

Application of the Extended Version of the 8 Method to Distillation 
Columns 

The original 8 method was developed for the case wherc the specifica- 
tions for the distillation column (see Fig. 1) are taken to be the number of 
stages, the location of the feed plate, the type of condenser, the column 

FIG. 1. Sketch of a conventional distillation column. 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 3 

pressure, the distillate rate D,  and the reflux rate L,. Many times it is 
desired to make specifications such as the reflux ratio L , / D  and the 
boilup ratio V,/B or the top and bottom temperatures TD and TB or some 
combination of these instead of the reflux and distillate rates L ,  and D. 
Although both the condenser and reboiler duties, Qc and QR, may be 
specified in lieu of L,  and D,, the choosing of two such values for which 
a solution exists could prove difficult. Consequently, the specification of 
both of these duties is not generally recommended unless the specified 
values are known to be realistic. 

For definiteness, suppose that the reflux ratio L,/D and B/V, are taken 
to be specified instead of L,  and D in the above set of specifications for the 
conventional distillation column shown in Fig. 1. Except for the addi- 
tional functions and variables involved in the extended version of the 8 
method, the general calculational procedure is the same as that used with 
the original 8 method (9, 10). In the interest of completeness these equa- 
tions are presented in Table l ,  but in the interest of brevity they are not 
derived. 

On the basis of sets of assumed temperatures { T j }  and vapor rates { V j } ,  
the component material balances may be solved for the component flow 
rates. (It is of course supposed that the liquid rates { L j }  are first computed 
by use of the set of assumed vapor rates { V j }  and the total material 
balances.) The component-material balances may be represented by 
the matrix equation 

A , v ~  = - { i  (1) 

where the elements of the square matrix Ai  and the column vectors vi 
and li are presented in Table 1. After Eq. (1) has been solved for the 
component flow rates (these rates are denoted by the subscript “ca”) and 
used in an extended 8 method of convergence in the following manner. 
First the multiplier 8 is defined in the usual way. [“I = 8[5] 

di co di ca 

where it is required that the corrected rates, denoted by the subscript “co,” 
satisfy the component-material balance enclosing the entire column; 
namely, 

Elimination of (bi)co from Eqs. (2) and (3) gives 
FX, = (d,),, + @ 3 C O  (3) 
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4 HAAS, GOMEZ M., A N D  H O L L A N D  

TABLE 1 

Equations for Conventional Distillation Columns Which Are to Be Used with 
the 8 Method of Convergence 

I. Component-Material Balance 

A.v .  = - /. 
I 1  

where 

- ~ 1 i  1 0 0 0 * * '  0 

A Z i  - p 3 i  1 0 . . .  0 
0 

................................... 
o . . . . . . . . . . . . . . . . .  A N - l , i  - P N i  

vi = [diVZiUJi...VNi]T 

i i  = [O...Ou,i~FiO...O]= 
p . .  J I  = 1 + A j i ,  A j i  = L j / R i j V j  for j#  1, N .  A i i  = L i / K i i D  for a partial 

condenser, A l i  = L , / D  for a total condenser, ANi = B/KNiVN 

The flow rates uFi  and lF ,  denote the vapor and liquid flow rates of component i in a 
partially vaporized feed. Equation (1) may be solved for the component-flow rates by 
use of the Thomas Algorithm ( 9 , l O )  or modifications of it proposed by Boston et al. 
(3). 

11. Calculation of Corrected Mole Fractions 

where p i  is defined by Eq. ( 5 ) .  

111. Calculation of Temperatures by the Kb Method 

b 
*j 

K j ,  = - + a 

where 
air Kji/Kj, 

a, b = constants selected such that the values of the Kb at the lower 
and upper temperature limits of the curve fits are equal to the 
respective K values of the mid-boiling or those of the compo- 
nent in the mixture which is just lighter 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 5 

IV. Calculation of Total Flow Rates by Use of Enthalpy Balances and Total Material 
Balances 

1 .  Energy balances for the rectifying section: 

V ,  = i = l  
J C ( j  = f + 1,f + 2, ..., N )  

C IHi(Tj) - h i ( r j - 1 ) I ~ j i  
i =  1 

V. Total Material Balances 

V j , ,  = L j  + D 
V f  + VF = L f - 1  + D 

L j  = Vj+l + B 
F = D + B  

( j =  1, 2, ..., f - 2) 

( j = f +  l , f +  2, ..., N )  

To avoid numerical difficulties which arise when (&, = 0, the new 
variable p i  is introduced. Its definition is 

Then 

( d i ) c o  = Pi(di)ca (6) 
Next the 8 method is applied. The f3 method of convergence consists of 

a procedure for selecting a new set of terminal flow rates such that the 
terminal streams are in material balance, energy balance, and the equi- 
librium relationships for these streams are satisfied. In this procedure, 
the variables x, 

x = [f3 Ti T2 TN - 1 TNQCQR]' (7) 
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6 HAAS, GOMEZ M., A N D  HOLLAND 

are to be selected such that the functions f, 

f = [glgz.. .971= (8) 
are satisfied f = 0. The first four.functions are based on the equilibrium 
relationships for the streams D, V,, L N -  1, and B :  

The function g1 applies for the case where the column has a total 
condenser. If the column is equipped with a partial condenser, the 
dew point form of the equilibrium relationship is used as in Eq. (10). 
Also, the subscript ‘‘co” has been omitted in the above equations as well 
as those which follow in the interest of simplicity. The flow rates uzi  and 
1,- are expressed in terms of di and bi by use of component-material 
balances enclosing the condenser-accumulator and the reboiler, 
respectively : 

and 

lN- l , i  = uNi  + bi  = SNibi + b i  = 

The functions gJ, gst and g7 are based on enthalpy balances enclosing 
the condenser-accumulator section, the entire coIumn, and the reboiler, 
respectively : 

C 

C di[HDi(r,) - hi(T1)1 + QC 

- 1  g 5  = i = 1  

u 2 i [ ~ i ( ~ 2 )  - hi(~111 
i =  1 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 7 

where HDi(T,) = hi(Tl) for a total condenser and HDi(T1) = Hi(Tl)  for 
a partial condenser. 

C 

C d i [ H D i ( T l )  - h i ( T N > l  4- QC 
i =  I 

(16) - 1  
gs = FXi[Hi (Tfeed)  - + QR 

i =  1 

O N i f H d T N )  - hi (TN) l  

(1 7) 
i =  1 

9 7 =  c - 1  
/ N - l , i [ h i ( T N - l )  - + QR 

i =  1 

where the expressions for u2i and l N - l , i  are given by Eqs. (13) and (14), 
respectively. The flow rate uNi  is expressed in terms of bi by the equilibrium 
relationship 

Observe that the functions g 1  through g7 may be stated explicitly in terms 
of 8 by expressing them in terms of p i  since p i  is expressed explicitly in 
terms of 8. The variables di, u 2 i ,  b i ,  IN-, , i ,  and u N i  which appear in these 
functions are expressed in terms of p i  as follows. First, observe that 
Eq. ( 6 )  gives d i  in terms ofp, ,  and that Eqs. ( 6 )  and (13) may be combined 
to give an expression for u 2 i  in terms of p i ,  

Equations (2) and (6) may be combined to give b,  in terms of 8; namely, 

bi = o ( b i ) c a P i  (20) 

The flow rate / N - l , i  is expressed in terms of p i  by use of Eqs. (14) and 
(20) as follows: 

Finally, u N i  is expressed in terms o fp ,  by use of Eqs. (18) and (20), 

The solution set of values of the variables x = [81TlT,TN-lTNQcQ,]T 
which make f = 0 may be found by use of the Newton-Raphson method 
or a variation of it such as the one proposed by Broyden (5). The Newton- 
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8 HAAS, GOMEZ M., A N D  H O L L A N D  

Raphson method consists of the repeated use of the Newton-Raphson 
equations 

J A X =  - f  (23) 

until the convergence criteria have been satisfied. The Jacobian matrix J 
and the column vector AX appearing in the above equation have the follow- 
ing definitions: 

dfl df, afl aft afl I--- ae aT, aT, aQc aQR 
, . . - -  

- . . . . . . . . . . . . . .  

1 ..................... 
af7 

~ Q R  
. . . . . . . . . . . . . .  - 

AX = [AOA T, ATzATN - , ATNAQcAQR]' 

Ad = 9,+1 - 9, 

where en is the value of 0 assumed to make the nth trial. After Eq. (23) 
has been solved for AX, the values of the variables to be used for the next 
trial are found as follows: 

Q R , n + I  = QR,n + AQR 

In the the event that the computed value of any variable is unacceptable 
(either negative or outside the range of curve fits), each of the corrections 
is reduced successively by factors of 1/2 until an acceptable set of values 
of the variable for working the next trial is obtained. Prior to solving 
Eq. (23) for AX, column scaling followed by scaling is recommended. 

Analytical expressions may be used to evaluate the elements of the 
Jacobian. These expressions are readily obtained by explicit differentiation 
of the functions f with respect to each of the variables in the same manner 
as shown below for the function g1 : 

91 a'' _ -  - ae D ~ = ~  [ Ki(Ti)(dJCa( g)] - 5 a 
where 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 9 

Instead of evaluating the elements of J by use of the analytical expres- 
sions for the partial derivatives, the derivatives may be evaluated numeri- 
cally. In order to avoid the evaluation of the derivatives and the inversion 
of the Jacobian matrix for each trial, Broyden’s method (5) may be used. 
Some reduction of the computer time required by Broyden’s method 
may be achieved through the use of a combination of Broyden’s and 
Bennett’s algorithms ( I ,  8). 

After the solution set of variables has been obtained, the compositions 
are computed by use of the expressions given by Eq. (B) of Table 1. These 
compositions are used to compute the remaining unknown temperatures 
(T3,  T4, ..., TN-2) by use of the Kb method; see Eqs. (C)  and (D) of Table 
1. The variables x which make f = 0 as well as the compositions found 
by Eq. (B) of Table 1 are used in the calculation of a new set of total flow 
rates by use of the enthalpy and total material balances; see Table 1. 

Specification sets other than the reflux ratio and the boilup ratio may be 
made as mentioned above. For the sets enumerated, the seven g functions 
listed above are used. However, when the reflux ratio and the distillate 
rate D are specified as in the orginale method (9, lo), only one g function 
is required; namely, 

After the 8 > 0 that makes g(8) = 0 has been obtained, the temperatures 
are found by the Kb method and the total flow rates are found by use of 
enthalpy and total material balances as shown in Table 1. 

Illustrative Examples 

In order to compare the proposed extension of the 8 method with the 
algorithms based on the Newton-Raphson method, the results obtained 
by solving several examples are presented. To compare the proposed 
extension of the 8 method with the original 8 method, Example 1 (see 
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10 HAAS, GOMEZ M., A N D  HOLLAND 

Table 2) was solved. The solution value found previously (9) for the 
boilup ratio (V,/B = 1.80585) was used as one of the specifications and 
a reflux ratio L, /D  = 2 was used as the other specification. The variation 
of the variables 8, T,, T,, TN- ,, TN, Q,, and QR of the proposed extension 
of 8 method with trial number is shown in Table 3 and the solution values 
of the variables are shown in Table 4. This same example was also solved 
by use of the seven g functions stated above and the specifications of Q, 
and QR corresponding to the solution values obtained by previous solution. 
In this case the independent variables were as follows: 8, T, ,  T,, TN-,, 
TN, L J D ,  and VN/B. This same example was also solved by the 2N 
Newton-Raphson method by Hess et al. (8) as shown in Table 5. In this 

TABLE 2 

Statement of Example I 

Component F X I  Specifications 

2.0 L 
10.0 
6.0 

12.5 
3.5 

15.0 
15.2 
11.3 
9.0 
8.5 
7.0 

, J D  = 2 and VNjE = 1.80585, boiling point liquid feed, 
partial condenser, column pressure = 300 psia, N = 
12, and f =  5. Equilibrium and enthalpy data for all 
components are given in Ref. 9. The initial temperature 
profile is to be taken linear with plate number between 
TI = 61O"Rand T12= 910"R. Take the initial vapor rate 
profile to be V,= 94.8 (1 5 j 5 12), and the correspond- 
ing liquid rate profile is given by material balance. Com- 
ponent i-C4HI0 was taken as the base component and a 
and b in Eq. (D) of Table 1 were determined on the basis 
of the values for the K of i-C4Hlo at 510 and 960"R. 

Commonly referred to as the 400°F normal boiling fraction. 

TABLE 3 

Convergence Characteristics of the 0 Method for Example 1 When the Addi- 
tional Specifications Are L J D  = 2 and V N / E  = 1.80585 

Trial 
no. e TI 7'2 TN-I TN Qc Q R  

1.0000 610.0 635.0 885.0 910.0 3.0 x 105 2.0 x 106 
1 3.5990 582.82 619.01 715.16 790.96 3.5863 x lo5 1.1689 x lo6 
2 2.0270 566.62 595.20 773.53 827.08 3.8713 x lo5 1.3081 x lo6 
3 0.77160 567.13 593.51 768.14 826.54 3.9443 x lo5 1.3194 x lo6 
4 1.0820 567.29 593.89 767.93 826.48 3.9512 x lo5 1.3199 x lo6 
5 0.98006 567.36 594.04 767.87 826.45 3.9542 x lo5 1.3201 x lo6 
6 1.0034 567.36 594.03 767.88 826.45 3.9541 x lo5 1.3201 x lo6 
I 0.99926 567.36 594.04 767.81 826.45 3.9543 x lo5 1.3201 x lo6 
8 1.0002 567.36 594.04 767.87 826.45 3.9543 x lo5 1.3201 x lo6 
9 0.99991 567.36 594.04 761.87 826.45 3.9543 x lo5 1.3201 x lob 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS II 

TABLE 4 

Solution of Example 1" 

Temperature and vapor rate profiles 
Production distribution 

Temper- Vapor 
Compo- ature rate 

nent di bi Stage no. (OR) (Ib-mol/h) 

0.200000 x 10 
0.999990 x 10 
0.597230 x 10 
0.1234600 x lo2 
0.74216 
0.53699 
0.20153 x 
0.94035 x 

0.63427 x lo-' 
0.65162 x lo-" 

0.94025 x 1 0 - ~  

0.11163 x lo-' 1 (distillate) 
0.11627 x 2 
0.27665 x lo-' 3 
0.1 5358 4 
0.27578 x 10 5 (feed) 
0.14462 x 10' 6 
0.15197 x lo2 7 
0.11299 x lo2 8 
0.89999 x 10 9 
0.84999 x 10 10 
0.69999 x 10 1 1  

1L 
13 (bottoms) 

567.57 
594.37 
61 1.93 
630.26 
667.41 
688.69 
703.28 
714.13 
722.90 
731.71 
744.15 
768.00 
826.57 

- 
92.80 
93.29 
89.42 
80.1 1 

110.80 
126.27 
136.86 
144.41 
148.87 
149.47 
143.72 
123.52 

~ ~~ ~ 

Convergence criterion: Ig(1)l 5 

formulation of the Newton-Raphson method, two independent variables 
per stage are used for a total of 2N variables and 2N functions. As illus- 
trated in Table 5 by the results obtained for Example 2 ,  the 8 method 
becomes many times faster than the 2N Newton-Raphson method as the 
number of stages is increased. 

To compare the 2N Newton-Raphson method with another formulation 
of the Newton-Raphson method called the Almost Band Algorithm 
(6) [which is similar to the formulation of Sandholm et al. ( I ] ) ] ,  the 
sequence of examples shown in Table 6 was solved by both methods. 
The Almost Band Algorithm differs from the 2N Newton-Raphson method 
in that the formulation is in terms of [N(c + 2)  + 11 independent variables 
instead of 2N.  For small numbers of components, the 2N Newton-Raphson 
method is faster than the Almost Band Algorithm and, conversely, for 
large numbers of plates and a small number of components the Almost 
Band Algorithm is faster than the 2N Newton-Raphson Method as shown 
in Table 7. Since the 8 method is 5 to 20 (or more) times faster than the 
2N Newton-Raphson method, it can be expected to be faster than the 
Almost Band Algorithm by the same orders of magnitude. The computer 
memory requirements for the 8 method are much less than those of the 
Newton-Raphson method. For columns with large numbers of plates 
and components, this advantage of the 8 method over the Newton- 
Raphson method becomes most significant. The 2N Newton-Raphson 
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TABLE 5 

Computer Times Required 

Example No. of No. of Specificant No. of 
no. Refs. stages components ions Method trials Computer time (s) Compiler 

1 10 1 3  1 1  % and D 

11 L a n d 5  D B  1 7 13 

1 7 13 11 QC and QR 

11 & a n d %  D B  
1 8 13 

7 b a n d  D D 2 8 104 

2 8 104 7 %and- V N  
B 

0 method 12 

0 method 13 

0 method 10 

2N Newton-Raphson 5" 

0 method 17 

2N Newton-Raphson - 

2.6 

1.66 

1.37 

10.74 

3.65 

90 s per iteration; 
did not run to 
convergence 

WATFIV 

FORTRAN H 
OPT 2 
FORTRAN H 
OPT 2 

WATFIV 

FORTRAN H 
OPT 2 

FORTRAN H 
OPT 2 

"Five trials were required when the derivatives were evaluated by use of the analytical expression for the partial derivatives; 10 trials 
and 12.45 s were required by Broyden's method. 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 13 

TABLE 6 
Statement of Examples Used in the Comparison of the 2N Newton-Raphson 

and the Almost Band Matrix Method" 

Number of components 

Component 4 6 8 10 12 

CzH6 X X 
C3Hs X X X X 
C3Hs X X X X X 
i-C4Hs X 
i-C4H, X X X 
n-C4Hlo X X X X X 
i-CsH12 X X X X X 
n-C5H12 X X X X X 
n-C6H14 X X X 
~ G H I  6 X X 
n-CsHla X X X 
400 X 

"The distillation column had a total condenser and the feed plate was located in the 
middle of the column, N/2, where N is equal to the total number of stages. An equi- 
molar feed was used for each example and the total flow rate of the feed was fixed 
at 100 mol/h. Examples were solved with 4,6,8,10, and 12components. The identity 
of the particular set of components used for each example is given in the body of the 
table. The temperature of the feed for each Example 2 was 100"F, and a column 
pressure of 300 psia was used for all examples. The reflux ratio was held fixed at 2, 
and the product rates were set at 50% of the feed rate for all examples. The ideal 
solution K values and enthalpies were taken from Tables A-4 and A-8 of Ref. 9. 

TABLE I 

Comparison of the 2N Newton-Raphson and the Almost Band Matrix Methods 

2N Newton- Almost Band 
Example Raphson method" Matrix method 

No. of No. of No. of Time No. of Time 
stages components trials 6) trials 6) 

12 
12 
12 
12 
12 
25 
25 
25 
25 
25 
50 

4 
6 
8 

10 
12 
4 
6 
8 

10 
12 
4 

9 
5 
5 
8 
I 
6 
8 

12 
16 
9 

16 

1.03 
1.32 
1.49 
1.73 
1.87 
2.59 
4.52 
4.32 
5.31 
1.34 

13.13 

6 
9 
9 
9 

10 
10 
10 
10 
12 
12 
20 

0.57 
0.92 
2.35 
3.68 
6.11 
1.05 
1.62 
2.41 
4.36 
6.15 
3.08 

"These results were obtained by use of Procedure 2, Broyden's method, as modified 
by Bennett. 
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14 HAAS, GOMEZ M., AND HOLLAND 

method is an exact application of the Newton-Raphson method for 
problems involving mixtures which form ideal solutions, and the Almost 
Band Algorithm is an exact application of the Newton-Raphson method 
for problems involving mixtures which form either ideal or nonideal 
solutions. 

Absorber-Type Problems 

Problems involving columns which do not have both a condenser and 
a reboiler, such as absorbers, strippers, and reboiled absorbers, are called 
absorber-type problems. For illustrative purposes the 0 method will be 
applied to the absorber shown in Fig. 2. 

The specifications commonly made on such a column are as follows: 
the number of stages N ,  the complete definitions of the lean oil Lo and 
rich gas N + 1 (temperatures, thermal conditions, compositions, and 
flow rates), and the column pressure. The calculational procedure is 
analogous to that described for distillation. The component-material 
balances are again represented by the matrix equation given by Eq. (1). 
In this case, however, vi = [u1iu2i...~Ni]T and the vector I i  contains the 
lean oil and rich gas rates in the first and last rows; that is, k i  = [loiO... 
00, + 1, il. 

FIG. 2. Absorber and identifying symbols. 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS I5 

After the component-material balances have been solved for the 
component flow rates, the 8 method i s  applied for the purpose of obtaining 
improved values for V, ,  LN, T I ,  and TN. The equations for the 8 method 
are developed as follows. First 8 i s  defined in the usual way: 

[3. = 8 [ k I c a  

The formula for (ul i )co is found in a manner analogous to that demonstrated 
above for (dJc0. Use of Eq. (29) to eliminate ( lNi)co from a component- 
material balance yields the following expression upon rearrangement : 

l O i + U N + l , i  

(u 1 i>ca + e(lNi)ca 
P i  = 

The multiplier 8 is to be selected such that the component-material 
balances and energy balance enclosing the entire column are satisfied as 
well as the dew point temperature of V ,  and the bubble point temperature 
of LN. In this case the variables and functions of the 0 method are as 
follows : 

x = [ ~ T , T J  (3 1) 

f = [9t92931T (32) 
where g 1  is based on the dew point relationship for the stream Vl, g 2  is 
based on the bubble point expression for LN, and g3 is based on an energy 
balance enclosing the entire column. These functions are as follows: 

fi Vli[Hi(TI) - h i ( ~ , ) l  
- 1 (35) i =  1 

9 3 =  c 

{ U N + I , i [ H i ( T N +  1)  - + z O i [ h i ( T O )  - h i ( T ~ ) l >  
i =  1 

The set of variables x required to make f = 0 is readily found by use of 
the Newton-Raphson method. After a solution set of values of the varia- 
bles has been found which satisfy the g functions, the compositions of 
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16 HAAS, GOMEZ M., AND HOLLAND 

Stages 2 through N - 1 are computed by use of the expressions given by 
Eq. (B) of Table 1. Then the Kb method is applied to determine the 
temperatures T2,  T,, ..., T N - l .  Next the constant-composition form of 
the enthalpy balances is used to compute the total flow rates: 

C C 

( j  = 1,2, ..., N - 1) 

The corresponding vapor rates are found by use of the total material 
balances. (Note: the values of V ,  and L, need not be determined because 

TABLE 8 

Statement and Solution of Example 3. [taken from Boyum (4)]  
I. Statement of Example 2" 

v N + l , i  10 1 
Component (1 b-moljh) (I b-mol/h) 

14 50 
21 30 

20 35 
70 100 

- - 

'Other specifications: N = 15, P = 14.7 psia, To = 30"F, and T N + l  = 90°F. Initial 
temperature profile: linear between TI  = 40°F and T ,  = 89.6"F. Initial vapor rate 
profile: V, = 70.29 ( j  = 1,2,  ..., N). Use the vapor-liquid equilibrium and enthalpy 
data given by Boyum (4). 

11. Convergence Characteristics 

1 1.4635 43.96 89.60 
2 0.93779 49.33 80.12 
3 0.79829 52.98 77.19 
4 0.96843 52.30 75.13 
5 0.98789 51.72 75.46 
6 1 .OO69 51.33 75.82 
7 1.0125 51.13 75.02 
8 1.0111 5 1.06 76.19 
9 1 .OO71 51.08 76.23 

10 1.0032 51.11 76.22 
11 1.0006 51.15 76.20 
12 0.99935 51.18 76.17 
13 0.99905 51.19 76.16 

(coniinued) 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 17 

TABLE 8 (Continued) 

111. Final Temperature and Vapor Rate Profiles 

Plate no. VJ (Ib-mol/h) TJ (OF) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13  
14 
15 

61.376 
70.522 
10.522 
70.521 
70.520 
70.517 
70.511 
70.499 
70.476 
70.431 
70.350 
70.220 
70.055 
69.954 
70.120 

51.19 
5 1.20 
51.20 
51.22 
5 1.24 
51.29 
51.39 
51.59 
51.99 
52.76 
54.24 
56.92 
61.38 
67.94 
76.15 

IV. Final Product Distribution 

V l l  " 1  
Component (Ib-mol/h) (Ib-mol/h) 

n-C4H1o 47.395 16.605 
n-CsHlz 9.449 41.551 
i-CSHIZ 4.532 50.468 

they will have been determined by the use of the equations for the 6' 
method.) 

To illustrate this application of the 6' method, Example 3 of Table 8 
was solved. The test example proposed by Boyum (4 )  was used because 
the approximate variations of the Newton-Raphson method such as the 
one proposed by Sujata (12) failed to converge for this example. The 
convergence characteristics of the 0 method for this example are illustrated 
in Table 8 in which the variation of the variables 0, TI, and TN with 
trial number is shown. 

In order to solve certain other absorber examples by this procedure, it 
was necessary to divide the column into a system of two or more columns 
and then apply the 8 method to each column of the system as described 
below. 
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18 HAAS, GOMEZ M., AND HOLLAND 

Decomposition of a Column or a System of Columns into a System 
Containing Any Arbitrary Number of Columns 

It may be desirable because of stability, speed, or the size of the com- 
puter available to reduce a large problem (a large set of equations) into 
a set of smaller problems which are solved sequentially by dividing the 
column into two or more columns as suggested by Fig. 3.  In the proposed 
calculational procedure, one or more complete trials are made on each 
column of the newly formed system. The 0 method is then applied in 
order to pick a set of corrected terminal flow rates which satisfy the 
component-material balances and the energy balances enclosing each 
column as well as the equilibrium relationships for each of the streams 
cut by the energy and material balance enclosures. 

To illustrate this application of the 0 method, the absorber shown in 
Fig. 2 is divided into two parts, and these parts are called Columns 1 and 
2 as shown in Fig. 3. The solution to a typical absorber problem, Example 
3, is to be found by obtaining the solution to the system of two columns 
shown in Fig. 3 .  

To initiate the first trial on Column 1, the composition of V,,, is 

I 

COLUMN 

I 

M 

M+ I 

COLUMN 
2 

N 

FIG. 3. Division of a single column into a system of two columns. 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS I9 

assumed, and one or more trials are made on this absorber by use of the 
8 method as described for absorbers. The new sets of temperatures and 
flow rates so obtained are saved. The values of the IMi’s obtained by 
the 8 method are used to make one or more trials on the second column, 
and the temperatures and flow rates so obtained are saved. Prior to making 
the next set of trials on each column, the 0 method is applied in order to 
find new sets of terminal flow rates {uli}, { u ~ + ~ , ~ } ,  {IMi}, and {INt} 
which satisfy the material and energy balances enclosing each column as 
well as the equilibrium relationships for each of the terminal streams. 

In this application of the 0 method to the system of two columns shown 
in Fig. 3, two multipliers are defined: 

- i = qyca 
u1 i 

- IN i = 0 2 [ 4  IN i 

u M + l , i  M +  l , i  ca 

(37) 

where the subscript “co,” which was used previously to denote the cor- 
rected values on the left-hand sides of these equations, has been omitted 
in the interest of simplicity. 

The 0’s are to be picked such that the corrected component flow rates 
satisfy the following component-material balances simultaneously : 

u M + l , i  - u,i - lMi = -1,i 

IMi - u M + l , i  - INi = -uN+l.i 

(39) 

(40) 

Use of Eqs. (37) and (38) to restate Eqs. (39) and (40) in terms of u l i  and 
u M +  gives the following result when stated as a matrix equation: 

where 

=0, = (“) , u l i  ca 

The energy balances enclosing Columns 1 and 2 depend upon O,, 02, 
and the four temperatures, T,, T,, TM+ ,, and T N ,  of the terminal streams. 
Thus the variables and functions of the 0 method are: 

= [ele2TlTMTM+lTNIT 

f = [9192. * .S6IT (42) 
Of the six functions, four are based on the equilibrium relationships for 
the terminal streams, and two are based on the energy balances enclosing 
the respective columns. They are 
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10 HAAS, GOMEZ M., A N D  HOLLAND 

u M + l , i  [ iil K i ( T M +  1 )  
9 3  = c c u M + l , i  

(43) 

The solution set of values of the variables x may be found by use of the 
Newton-Raphson method. Then on the basis of the most recent set of 
values of the variables, the second set of trials on Column 1 is made. 
The results so obtained are used to initiate the second set of trials on 
Column 2. 

To illustrate the application of the methods described above, a 
typical absorber example which had been solved by a formulation of the 
Newton-Raphson method involving 2N variables (the Ti’s and the Lj/Vj’s) 
is presented as Example 4 in Tables 9 and 10. This example was selected 
because it was one of the few absorber examples for which the 6’ method 
failed to converge. However, when this problem was solved as a system 
of two columns with each column containing four plates as illustrated in 
Fig. 3, convergence was obtained by use of the combination of the 6’ and 0 
methods as described above. It was found that four column trials by the 
6’ method per system trial tended to minimize the total computing time. 
To determine additional characteristics of the 0 methods, several variations 
of Example 4 were solved in which the number of plates was varied from 
eight to twenty. Convergence was achieved by using from one to five plates 
per column or unit. Because of the relatively small number of plates, 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 21 

TABLE 9 

Statement of an Absorber Problem, Example 4 

Rich gas, Lean oil, 

nent (Ib-mol/h) (Ib-mol/h) 
Compo- V N + I . L  10 1 

Other specification 

coz 0.4703 
Nz 0.1 822 
CH4 88.7000 
CzHs 6.6747 
C3Hs 2.7786 
i-C4HI0 0.6375 
n-C4Hio 0.3655 
i-C4H12 0.1158 
n-C5HIZ 0.0505 
C6H14 0.0146 
C7H16 0.0081 
C S H I ~  0.0020 
C9H20 0.0 
C10H22 0.0 

100.00 

0.0 To = 462.9"R, T N + l  = 460"R, N = 8, and 
0.0 P = 800 psia. Initial temperature profile to 
0.0 be constant at T, = 485"R for all j (1 5 
0.0 j 5 N). The initial vapor rate profile is to be 
0.001 5 constant at V, = 90.88 (1 5 j 5 8), and 
0.0006 the liquid rates are L, = 6.3092 (1 5 j 5 
0.0013 7) and L8 = 15.42. Use the K values and 
0.0067 enthalpies given in Ref. 10 
0.0061 
0.1495 
0.5736 
1.8214 
1.6866 
2.0619 
6.3092 

Convergence Characteristics and Solution of Example 4 

Initial 
values 

1 
2 
3 
4 
5 
6 
7 
8 

- 
1.1494 
0.95466 
0.96293 
1.0063 
1 .OW6 
0.99535 
0.99860 
1.0001 

- 
1.0660 
0.97700 
0.98039 
1.0029 
1.0003 
0.99764 
0.99925 
1.0001 

485.00 
495.95 
487.40 
486.09 
488.38 
488.14 
487.79 
487.86 
487.93 

485.00 
426.63 
486.77 
492.37 
488.12 
488.40 
489.63 
489.66 
489.53 

485.00 
477.00 
483.40 
487.81 
487.02 
486.94 
487.49 
487.64 
487.62 

485.00 
468.27 
477.11 
476.85 
474.88 
475.18 
475.46 
475.36 
475.30 

"Temperatures are in OR. 

no significant speed advantage of the 8 methods over the 2 N  Newton- 
Raphson method was realized in the solution of absorber problems. This 
is a consequence of the fact that absorbers generally contain a relatively 
small number of stages. 

In conclusion, the 8 method may be used to solve a variety of additional 
problems involving distillation columns in which specifications other than 
the reflux and distillate rates are made. Furthermore, the 0 method is 
significantly faster than the Newton-Raphson methods for columns which 
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22 HAAS, GOMEZ M., AND HOLLAND 

TABLE 10 
Solution of Example 4 

I. Product Rates 

Component u11 IN I 

0.34840 
0.18037 
0.82841 x lo2 
0.46875 x 10' 
0.67786 
0.90314 x 
0.11957 x 
0.17761 x lo-' 
0.11812 x 
0.11098 x lo-' 
0.17115 x lo - '  
0.10240 x lo-'  
0.60846 x lo-* 

88.816 

0.121 90 
0.19104 x 
0.58600 x 10' 
0.19872 x 10' 
0.21022 x 10' 
0.62915 
0.36556 
0.12069 
0.55469 x 10-1 
0.15298 
0.56458 
0.16763 x loL 
0.20558 x 10' 

17.494 

11. Temperatures and Vapor Rates 

~ ~ ~~ ~ 

Temperature Total vapor rate 
Stage no. T, ( OR1 VJ 

1 487.93 88.816 
2 491.03 93.959 
3 490.85 94.351 
4 489.54 94.649 
5 487.62 94.966 
6 485.08 95.366 
7 481.45 95.950 
8 475.31 97.01 1 

contain large numbers of components and plates. Although the 0 methods 
may be used to solve absorber problems, no significant speed advantage 
over the 2N Newton-Raphson method was realized. It is anticipated that 
these new applications of the 0 methods will prove most useful because of 
their desirable characteristics of speed and independence of the initial 
values of the variables. 
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DISTILLATION AND ABSORBER-TYPE PROBLEMS 23 

SYMBOLS 
molar flow of component i leaving in the bottom product stream 
B 
total molar flow rate of the bottom product stream 
molar flow rate of component i in the distillate D 
total molar flow rate of the distillate 
total molar flow rate of the feed 
vector of variables 
the kth function of the mesh variables x 
enthalpy of pure component i in the liquid phase at the tem- 
perature T 
enthalpy of pure component i in the vapor phase at  the tem- 
perature T 
vapor-liquid equilibrium constant; y i  = Kixi 
molar flow rate of component i in the liquid leaving plate j 
total molar flow rate of the liquid leaving platej  
ratio of the corrected to the calculated values of the product 
rates for component i; see Eqs. (5) and (6) 
condenser duty 
reboiler duty 
function of the calculated flow rates and the 0 ’ s ;  defined 
beneath Eq. (41) 
molar flow rate of component i in the vapor phase leaving platej  
total molar flow rate of the vapor leaving t h e j  stage 
flow rate of the vapor part of a partially vaporized feed 
mole fraction of component i in the liquid phase leaving stagej 
vector of the independent variables of the g functions; see Eqs. 
(7) and (42) 
total mole fraction of component i in the feed 
mole fraction of component i in the vapor phase leaving stagej 
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