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Generalization of the Theta Methods of Convergence for
Solving Distillation and Absorber-Type Problems

J. R. HAAS, ALEJANDRO GOMEZ M.*, and C. D. HOLLAND

DEPARTMENT OF CHEMICAL ENGINEERING
TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS 77843

Abstract

An extension of the § methods of convergence wherein it is required that all
terminal streams must satisfy simultaneously material balances, energy balances,
and equilibrium relationships is presented. By use of this new convergence
method, any distillation-type or absorber-type problem may be solved. The
procedure has the flexibility of treating any column either as a single unit or a
system of any number of subunits. The new procedure permits the direct
solution of problems by use of the # methods which could not be solved by the
original method.

Applications of the § method to problems which differ from those
considered previously are presented. First an extension of the original 6
method is presented which makes it possible to solve distillation problems
in which the reflux ratio and the boilup ratio, or the condenser duty and
the reboiler duty, or combinations of these are specified in lieu of the reflux
rate and the distillate rate. The technique used to solve these distillation
problems is the same as that used to solve absorber problems in which the
total flow rates and compositions of the lean gas and rich oil streams are
to be determined when the inlet lean oil and rich gas streams are completely
specified. A further extension of the new version of the 6 method permits
any column to be solved as an equivalent system of any number of
subunits. The formulations shown herein and the testing of these have
thus far been for systems whose mixtures form ideal solutions.

*Present address: Instituto Tecnologico Regional De Celaya, Mexico.

Copyright © 1981 by Marcel Dekker, Inc.
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2 HAAS, GOMEZ M., AND HOLLAND

Application of the Extended Version of the § Method to Distillation
Columns

The original 8 method was developed for the case wherc the specifica-
tions for the distillation column (see Fig. 1) are taken to be the number of
stages, the location of the feed plate, the type of condenser, the column
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FiG. 1. Sketch of a conventional distillation column.
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pressure, the distillate rate D, and the reflux rate L,. Many times it is
desired to make specifications such as the reflux ratio L,/D and the
boilup ratio ¥y/B or the top and bottom temperatures Tp, and T or some
combination of these instead of the reflux and distillate rates L, and D.
Although both the condenser and reboiler duties, Q. and Qg, may be
specified in lieu of L, and D,, the choosing of two such values for which
a solution exists could prove difficult. Consequently, the specification of
both of these duties is not generally recommended unless the specified
values are known to be realistic.

For definiteness, suppose that the reflux ratio L,/D and B/V)y are taken
to be specified instead of L, and D in the above set of specifications for the
conventional distillation column shown in Fig. 1. Except for the addi-
tional functions and variables involved in the extended version of the 8
method, the general calculational procedure is the same as that used with
the original 8 method (9, 10). In the interest of completeness these equa-
tions are presented in Table 1, but in the interest of brevity they are not
derived.

On the basis of sets of assumed temperatures {7} and vapor rates {V},
the component material balances may be solved for the component flow
rates. (It is of course supposed that the liquid rates {L;} are first computed
by use of the set of assumed vapor rates {¥;} and the total material
balances.) The component-material balances may be represented by
the matrix equation

A‘Vi = - {i (1)
where the elements of the square matrix A; and the column vectors v;
and / ;are presented in Table 1. After Eq. (1) has been solved for the
component flow rates (these rates are denoted by the subscript “ca’) and
used in an extended 8 method of convergence in the following manner.
First the multiplier 0 is defined in the usual way.

.-, @

where it is required that the corrected rates, denoted by the subscript “co,”
satisfy the component-material balance enclosing the entire column;
namely,

FX i = (di)co + (bi)ca (3)
Elimination of (b,),, from Eqs. (2) and (3) gives

) FX;,  _  (d)afX;
eo = bi —dica+6bica
1+ 0[ ] @) Ch)

Q)

d;
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TABLE 1

Equations for Conventional Distillation Columns Which Are to Be Used with
the # Method of Convergence

I. Component-Material Balance

Ay, = — /i (A)
where
— D 1 0 o o0 .- 0
A —pa 1 o o0 .- 0
A= O Az psi 1 0 - 0
[\ P 0 Ay_1: —Pni

Vi = [dwivs 0"
{i [0-+-0v f{,0---0]"
pji= 1+ Ay, A;; = Li/K;;V;forj#1,N. A,; = L,/K,;D for a partial

condenser, A,; = L,/D for a total condenser, Ay; = B/Ky;Vy

The flow rates vy, and /r, denote the vapor and liquid flow rates of component 7 in a
partially vaporized feed. Equation (1) may be solved for the component-flow rates by
use of the Thomas Algorithm (9, 10) or modifications of it proposed by Boston et al.

3.

II. Calculation of Corrected Mole Fractions

(i'i)capi (v'i)capi
ji = 'c—j——, Yii = c—J’_ (B)
'—21 (lji)capi _Zl (Uji)capi

where p, is defined by Eq. (5).

HI. Calculation of Temperatures by the K, Method

1 € Vi
KiblTj,n+1 =" ’ or KjbITj,n+l = Z a__ljl (C)
Z ajilTj,,xji i=1 JiT jn
i=
K, =2+ (D)
v = o7 a
J Tj
where
oy = Ku/Kp

a, b = constants selected such that the values of the K, at the lower
and upper temperature limits of the curve fits are equal to the
respective K values of the mid-boiling or those of the compo-
nent in the mixture which is just lighter
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IV. Calculation of Total Flow Rates by Use of Enthalpy Balances and Total Material
Balances

1. Energy balances for the rectifying section:

—D ¥ [H{Ty. ) = HplT)Xos + O
L;=——5 L G=1,2 =2
_Z:l [Hi(Tj+1) - hi(Tj)]xji

N

-D
Ly =—1

[H(T;)—Hp(T)Xp;+ V¢ _g} [H(T))— H(Tp)]yri+ Qc

1

_; H{(Ty) — hTy- Dxp-14

2. Energy balances for the stripping section:

—B,_Z [h(Ty) — hi(Tj—x)]xBi + Or
V= L =S+ 1L,f+2,.,N)
__21 [Hi(Tj) - hi(Tj—l)]yji
V. Total Material Balances
VJ-+1=LJ~+D (j=l,2,...,f—-2)
Vf+ VF=LJ‘_1+D
L;=Vi. .+ B (G=rf+1Lf+2,.,N)

F=D+ B

To avoid numerical difficulties which arise when (d;)., = 0, the new
variable p; is introduced. Its definition is

FX;
e = @y + 00D ©)
Then
(di)co = P i(di)ca (6)

Next the 8 method is applied. The 8 method of convergence consists of
a procedure for selecting a new set of terminal flow rates such that the
terminal streams are in material balance, energy balance, and the equi-
librium relationships for these streams are satisfied. In this procedure,
the variables x,

x = [0T\T,Ty- TyQcQsl" M
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are to be selected such that the functions f,

f= [9192"'97]T ®)

are satisfied f = 0. The first four functions are based on the equilibrium
relationships for the streams D, V,, Ly_,, and B:

g, = cl [Z K,-(Tl)d.] -1 ©)
_Z di i=1

92 == [Z z,/Ki(Tz)} -1 (10)
Y v

gz = [g i(TN—l)lN—l,i:l -1 (11)

ge = Z [Z K.(TN)b] (12)

The function g, applies for the case where the column has a total
condenser. If the column is equipped with a partial condenser, the
dew point form of the equilibrium relationship is used as in Eq. (10).
Also, the subscript “‘co” has been omitted in the above equations as well
as those which follow in the interest of simplicity. The flow rates v,, and
Iy.-1,; are expressed in terms of d; and b; by use of component-material
balances enclosing the condenser-accumulator and the reboiler,
respectively:

L,
vy =ly+di=A4,4d+d = [W‘F I:Idi (13)

and

(14

K{(TyV
Inoy,i=vyi+ b= Syb; + b, = [—LN)—N + l]bi

B

The functions gs, g, and g, are based on enthalpy balances enclosing
the condenser-accumulator section, the entire column, and the reboiler,
respectively:

i di{Hp(T)) — h(T))] + Q¢
gs == -1 (13)
2,[H1(T2) h(T)]

lan
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where Hp(T,) = h(T,) for a total condenser and Hp(T,) = H(T,) for
a partial condenser.

3 dlHAT) = h(T] + Oc
go = = -1 (16
z

X[H (Tfeed) hz(TN)] + QR

T oulH(Ty) = (T

g7 = -1 an

Z Iyos IB(Tx_y) = (T + On

where the expressions for v,; and /y_, ; are given by Egs. (13) and (14),
respectively. The flow rate vy, is expressed in terms of b; by the equilibrium

relationship
K(TW)V,
Uyi = Syibi = [_l(_g)_d]bi (18)

Observe that the functions g, through g, may be stated explicitly in terms
of § by expressing them in terms of p; since p; is expressed explicitly in
terms of §. The variables d&;, v,;, by, Iy ;, and vy, which appear in these
functions are expressed in terms of p, as follows. First, observe that
Eq. (6) gives d; in terms of p;, and that Egs. (6) and (13) may be combined
to give an expression for v,; in terms of p,,

L
v2; = [ KT * l}pi(dom (19
Equations (2) and (6) may be combined to give b; in terms of 0; namely,
bi = O(b i)capi (20)

The flow rate /y_, ; is expressed in terms of p; by use of Eqgs. (14) and
(20) as follows:

, [Ki(TN)VN
N-1,i —

L] oW ay
Finally, vy, is expressed in terms of p; by use of Eqs. (18) and (20),

o= | S0 o5 . @)

The solution set of values of the variables x = [0, T, T, Ty_  TyQc0Qrl"
which make f = 0 may be found by use of the Newton-Raphson method
or a variation of it such as the one proposed by Broyden (5). The Newton-
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Raphson method consists of the repeated use of the Newton-Raphson
equations

JAX = —f 23)
until the convergence criteria have been satisfied. The Jacobian matrix J

and the column vector AX appearing in the above equation have the follow-
ing definitions:

A A
30 3T, oT, 30, 90,
P o
J=|20 30x
I i3
\69 aQR
AX = [AOAT,AT,ATy_ ,ATyAQAQR]"
A = 0n+1 - Hn

where 6, is the value of 8 assumed to make the nth trial. After Eq. (23)
has been solved for AX, the values of the variables to be used for the next
trial are found as follows:

9n+1 = 0n + AB
T1 mt1l = Tl,n + AT (24)

QR,n+1 = QR,n + AQR

In the the event that the computed value of any variable is unacceptable
(either negative or outside the range of curve fits), each of the corrections
is reduced successively by factors of 1/2 until an acceptable set of values
of the variable for working the next trial is obtained. Prior to solving
Eq. (23) for AX, column scaling followed by scaling is recommended.

Analytical expressions may be used to evaluate the elements of the
Jacobian. These expressions are readily obtained by explicit differentiation
of the functions f with respect to each of the variables in the same manner
as shown below for the function g, :

dg 1 op; g, oD
_51‘ = iZ:lliKi(Ti)(di)ca<56—>:| - 3 % (25)

ol

where
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14

oD <
D= Z (di)capi9 5_5 = 'Zl (di)capi

i=1

al,: —_ _ (bi)caFXi

00 [(d)ea + 0

6_g_1_ _ 1 & 0K(Ty)

37 = D& @eap 5 (26)
09, _ 99\ _99. _09: _%9: _, @7)

0T, 3Ty, 0Ty 0Qc 0Qr

Instead of evaluating the elements of J by use of the analytical expres-
sions for the partial derivatives, the derivatives may be evaluated numeri-
cally. In order to avoid the evaluation of the derivatives and the inversion
of the Jacobian matrix for each trial, Broyden’s method (5) may be used.
Some reduction of the computer time required by Broyden’s method
may be achieved through the use of a combination of Broyden’s and
Bennett’s algorithms (Z, §).

After the solution set of variables has been obtained, the compositions
are computed by use of the expressions given by Eq. (B) of Table 1. These
compositions are used to compute the remaining unknown temperatures
(T, T, ..., Ty_,) by use of the K, method; see Egs. (C) and (D) of Table
1. The variables x which make f = 0 as well as the compositions found
by Eq. (B) of Table 1 are used in the calculation of a new set of total flow
rates by use of the enthalpy and total material balances; see Table 1.

Specification sets other than the reflux ratio and the boilup ratio may be
made as mentioned above. For the sets enumerated, the seven g functions
listed above are used. However, when the reflux ratio and the distillate
rate D are specified as in the orginal § method (9, 10), only one g function
is required; namely,

c

90) = ¥ (@)~ D 28)
After the 6 > 0 that makes g(6) = 0 has been obtained, the temperatures
are found by the K, method and the total flow rates are found by use of
enthalpy and total material balances as shown in Table 1.

lustrative Examples

In order to compare the proposed extension of the 8 method with the
algorithms based on the Newton-Raphson method, the results obtained
by solving several examples are presented. To compare the proposed
extension of the 8 method with the original 6 method, Example 1 (see
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Table 2) was solved. The solution value found previously (9) for the
boilup ratio (¥y/B = 1.80585) was used as one of the specifications and
a reflux ratio L,/D = 2 was used as the other specification. The variation
of the variables 0, T, T, Ty 1, Tn, Qc, and Qg of the proposed extension
of 8 method with trial number is shown in Table 3 and the solution values
of the variables are shown in Table 4. This same example was also solved
by use of the seven g functions stated above and the specifications of Q
and Qg corresponding to the solution values obtained by previous solution.
In this case the independent variables were as follows: 0, T,, T, Ty_4,
Ty, L,/D, and Vy/B. This same example was also solved by the 2N
Newton-Raphson method by Hess et al. (8) as shown in Table 5. In this

TABLE 2

Statement of Example 1

Component FX,; Specifications

CH, 2.0 L,/D = 2 and Vy/B = 1.80585, boiling point liquid feed,
C,Hs 10.0 partial condenser, column pressure = 300 psia, N =
C;3Hg 6.0 12, and f = 5. Equilibrium and enthalpy data for all
C;3H;g 12.5 components are given in Ref. 9. The initial temperature
i-C4H o 3.5 profile is to be taken linear with plate number between
n-C,Hjo 15.0 T, = 610°R and T ,=910°R. Take the initial vapor rate
n-CsH,, 15.2 profile to be ;= 94.8 (1 £ j = 12), and the correspond-
n-CgH, 4 11.3 ing liquid rate profile is given by material balance. Com-
n-C-H;¢ 9.0 ponent i-C4H o was taken as the base component and a
n-CsHig 8.5 and & in Eq. (D) of Table 1 were determined on the basis
400¢ 7.0 of the values for the K of i-C4H, at 510 and 960°R.

¢ Commonly referred to as the 400°F normal boiling fraction.

TABLE 3

Convergence Characteristics of the § Method for Example 1 When the Addi-
tional Specifications Are L/D = 2 and Vy/B = 1.80585

Trial
no. 0 T, T, Tn-y Tx Qc Or
1.0000 610.0 635.0 885.0 910.0 3.0 x 10° 2.0 x 10°
1 3.5990 582.82 619.01 715.16 790.96 3.5863 x 10° 1.1689 x 10°
2 2.0270 566.62 59520 773.53 827.08 3.8713 x 10° 1.3081 x 10°
3 0.77160 567.13 593.51 768.14 826.54 3.9443 x 10° 1.3194 x 10°
4 10820 567.29 593.89 767.93 826.48 3.9512 x 10° 1.3199 x 10°
S 0.98006 567.36 594.04 767.87 826.45 3.9542 x 10° 1.3201 x 10°
6 1.0034 567.36 594.03 767.88 826.45 3.9541 x 10° 1.3201 x 10°
7  0.99926 567.36 594.04 767.87 826.45 3.9543 x 10° 1.3201 x 10°
8 1.0002 567.36  594.04 767.87 826.45 3.9543 x 10° 1.3201 x 10¢
9 0.99991 567.36 59404 767.87 826.45 3.9543 x 10° 1.3201 x 10¢°
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TABLE 4

Solution of Example 1¢

) o Temperature and vapor rate profiles
Production distribution

Temper-  Vapor

Compo- ature rate
nent d; b, Stage no. (°R) (Ib-mol/h)
CH, 0.200000 % 10 0.11163 x 10-8% 1 (distillate) 567.57 —
C,H, 0.999990 x 10 0.11627 x 10~ 2 594.37 92.80
C;sHg 0.597230 x 10 0.27665 x 10~ 3 611.93 93.29
C;3H, 0.1234600 x 10>  0.15358 4 630.26 89.42
i-C4H,, 0.74216 0.27578 x 10 5 (feed) 667.41 80.11
n-CiH;o 0.53699 0.14462 x 102 6 688.69 110.80
n-CsH,, 0.20153 x 10-2 0.15197 x 10° 7 703.28 126.27
n-C¢H;, 0.94035 x 10-% 0.11299 x 102 8 714.13 136.86
n-CsH,, 0.94025 x 10-% 0.89999 x 10 9 722.90 144.41
n-CgH;¢ 0.63427 x 10-7 0.84999 x 10 10 731.71 148.87
400 0.65162 x 102 0.69999 x 10 11 744.15 149.47
12 768.00 143.72

13 (bottoms)  826.57 123.52

¢ Convergence criterion: |g(1)| < 10-°

formulation of the Newton-Raphson method, two independent variables
per stage are used for a total of 2V variables and 2N functions. As illus-
trated in Table 5 by the results obtained for Example 2, the § method
becomes many times faster than the 2N Newton-Raphson method as the
number of stages is increased.

To compare the 2N Newton-Raphson method with another formulation
of the Newton-Raphson method called the Almost Band Algorithm
(6) [which is similar to the formulation of Sandholm et al. {(11)], the
sequence of examples shown in Table 6 was solved by both methods.
The Almost Band Algorithm differs from the 2¥ Newton-Raphson method
in that the formulation is in terms of [N(¢ + 2) + 1]independent variables
instead of 2V. For small numbers of components, the 2NV Newton-Raphson
method is faster than the Almost Band Algorithm and, conversely, for
large numbers of plates and a small number of components the Almost
Band Algorithm is faster than the 2V Newton-Raphson Method as shown
in Table 7. Since the # method is 5 to 20 (or more) times faster than the
2N Newton-Raphson method, it can be expected to be faster than the
Almost Band Algorithm by the same orders of magnitude. The computer
memory requirements for the 6§ method are much less than those of the
Newton-Raphson method. For columns with large numbers of plates
and components, this advantage of the 6 method over the Newton-
Raphson method becomes most significant. The 2N Newton-Raphson
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TABLE 6

Statement of Examples Used in the Comparison of the 2N Newton-Raphson
and the Almost Band Matrix Method®

Number of components

Component 4 6 8 10 12
C:H¢ X X
C;Hg X X X X
C3Hs = X X X X
i-C4H3 X
i-C4H10 X X X
n-C,Hi o X X X X X
i-CsHy, x X X X X
n-CsH, , X X X X X
n-CsH,, X X X
n—C7H, 6 X X
n'Cngg X X X
400 X

“The distillation column had a total condenser and the feed plate was located in the
middle of the column, N/2, where N is equal to the total number of stages. An equi-
molar feed was used for each example and the total flow rate of the feed was fixed
at 100 mol/h. Examples were solved with 4, 6, 8, 10, and 12 components. The identity
of the particular set of components used for each example is given in the body of the
table. The temperature of the feed for each Example 2 was 100°F, and a column
pressure of 300 psia was used for all examples. The reflux ratio was held fixed at 2,
and the product rates were set at 509/ of the feed rate for all examples. The ideal
solution K values and enthalpies were taken from Tables A-4 and A-8 of Ref. 9.

TABLE 7
Comparison of the 2N Newton-Raphson and the Almost Band Matrix Methods
2N Newton- Almost Band

Example Raphson method® Matrix method
No. of No. of No. of Time No. of Time

stages components  trials (s) trials (s)
12 4 9 1.03 6 0.57
12 6 5 1.32 9 0.92
12 8 5 1.49 9 2.35
12 10 8 1.73 9 3.68
12 12 7 1.87 10 6.11
25 4 6 2.59 10 1.05
25 6 8 4.52 10 1.62
25 8 12 432 10 2.47
25 10 16 5.37 12 4.36
25 12 9 7.34 12 6.15
50 4 16 13.13 20 3.08

“These results were obtained by use of Procedure 2, Broyden’s method, as modified
by Bennett.
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method is an exact application of the Newton-Raphson method for
problems involving mixtures which form ideal solutions, and the Almost
Band Algorithm is an exact application of the Newton-Raphson method
for problems involving mixtures which form either ideal or nonideal
solutions.

Absorber-Type Problems

Problems involving columns which do not have both a condenser and
a reboiler, such as absorbers, strippers, and reboiled absorbers, are called
absorber-type problems. For illustrative purposes the 8 method will be
applied to the absorber shown in Fig. 2.

The specifications commonly made on such a column are as follows:
the number of stages N, the complete definitions of the lean oil L, and
rich gas N + | (temperatures, thermal conditions, compositions, and
flow rates), and the column pressure. The calculational procedure is
analogous to that described for distillation. The component-material
balances are again represented by the matrix equation given by Eq. (1).
In this case, however, v; = [v,;v,;-'V5;]" and the vector {; contains the
lean oil and rich gas rates in the first and last rows; that is, {'i = [lp;0-+-
Ovy+ 1,

Vi Lo

Vi Qoi
I=

Va L

Vai i j=2

v L,

Vi Lai J=3
j=N-1
i=N

Vn+i Ly
YN+, Ani

F1G. 2. Absorber and identifying symbols.
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After the component-material balances have been solved for the
component flow rates, the § method is applied for the purpose of obtaining
improved values for ¥, Ly, T}, and Ty. The equations for the 6 method
are developed as follows. First 0 is defined in the usual way:

INi . lNi
[Dll]co B g[vli]ca (29)

The formula for (v, ;),, is found in a manner analogous to that demonstrated
above for (d;).,- Use of Eq. (29) to eliminate (/y;),, from a component-
material balance yields the following expression upon rearrangement:

(Ul i)ca = pi(vl i)ca (30)
where

;= loi+oney,i
‘ (vli)ca + 6(‘!Ni)ca

The multiplier 6 is to be selected such that the component-material
balances and energy balance enclosing the entire column are satisfied as
well as the dew point temperature of ¥, and the bubble point temperature
of Ly. In this case the variables and functions of the 6 method are as
follows:

x = [0T, Ty)" (€19

f=1[9.9.951" (32
where g, is based on the dew point relationship for the stream ¥V, g, is

" based on the bubble point expression for Ly, and g is based on an energy

balance enclosing the entire column, These functions are as follows:

gy = cl [Z vu/Ki(Tl)] -1 (33)
Z vli i=1
i=1

g; = cl [Z Ki(TN)lm] -1 (34)
Z lNi =t
i=1

c

Y, 0 [H(T)) = h(Ty)]

gs = = = —1 35
Z {on+ 1, [H T+ V) — BT + lo:[h{(To) — h(TY)]}

i=1

The set of variables x required to make f = 0 is readily found by use of
the Newton-Raphson method. After a solution set of values of the varia-
bles has been found which satisfy the g functions, the compositions of
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Stages 2 through N — 1 are computed by use of the expressions given by
Eq. (B) of Table 1. Then the K, method is applied to determine the
temperatures 7,, T;, ..., Ty_;. Next the constant-composition form of
the enthalpy balances is used to compute the total flow rates:

‘21 (Hje1,i — hodloi — 21 (Hjsro— Hyvy
L. = = L

J

_Zl (Hjsyi = hj)x
(.] = 1: 23 "'aN - 1) (36)
The corresponding vapor rates are found by use of the total material

balances. (Note: the values of V| and Ly need not be determined because

TABLE 8

Statement and Solution of Example 3. [taken from Boyum (4)]
1. Statement of Example 2°

UN 41,1 Iy

Component (Ib-mol/h) (Ib-mol/h)
n-CiHyo 14 50
n-CsH,y, 21 30
i-CsHi, 35 20
70 100

“Other specifications: N = 15, P = 14.7 psia, Ty = 30°F, and Ty, = 90°F. Initial
temperature profile: linear between T, = 40°F and Ty = 89.6°F. Initial vapor rate
profile: V; = 7029 (j = 1, 2, ..., N). Use the vapor-liquid equilibrium and enthalpy
data given by Boyum (4).

II.  Convergence Characteristics

Trial no. 7 T, (°F) Ty (°F)
1 1.4635 43.96 89.60
2 0.93779 49.33 80.12
3 0.79829 52.98 77.19
4 0.96843 52.30 75.13
5 0.98789 51.72 75.46
6 1.0069 51.33 75.82
7 1.0125 51.13 75.02
8 1.0111 51.06 76.19
9 1.0071 51.08 76.23

10 1.0032 51.11 76.22
11 1.0006 51.15 76.20
12 0.99935 51.18 76.17
13 0.99905 51.19 76.16

(continued)
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TABLE 8 (Continued)

III. Final Temperature and Vapor Rate Profiles

Plate no. V; (Ib-mol/h) 7, (°F)
1 61.376 51.19
2 70.522 51.20
3 70.522 51.20
4 70.521 51.22
5 70.520 51.24
6 70.517 51.29
7 70.511 51.39
8 70.499 51.59
9 70.476 51.99

10 70.431 52.76
11 70.350 54,24
12 70.220 56.92
13 70.055 61.38
14 69.954 67.94
15 70.120 76.15

1IV. Final Product Distribution

Y] Iy
Component (Ib-mol/h) (Ib-mol/h)
n-CiH,o 47.395 16.605
n-CsH,y, 9.449 41.551
i-CsH,, 4.532 50.468

they will have been determined by the use of the equations for the 6
method.)

To illustrate this application of the § method, Example 3 of Table 8
was solved. The test example proposed by Boyum (4) was used because
the approximate variations of the Newton-Raphson method such as the
one proposed by Sujata (/2) failed to converge for this example. The
convergence characteristics of the § method for this example are illustrated
in Table 8 in which the variation of the variables 6, T,, and T, with
trial number is shown.

In order to solve certain other absorber examples by this procedure, it
was necessary to divide the column into a system of two or more columns
and then apply the 6 method to each column of the system as described
below.
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Decomposition of a Column or a System of Columns into a System
Containing Any Arbitrary Number of Columns

It may be desirable because of stability, speed, or the size of the com-
puter available to reduce a large problem (a large set of equations) into
a set of smaller problems which are solved sequentially by dividing the
column into two or more columns as suggested by Fig. 3. In the proposed
calculational procedure, one or more complete trials are made on each
column of the newly formed system. The @ method is then applied in
order to pick a set of corrected terminal flow rates which satisfy the
component-material balances and the energy balances enclosing each
column as well as the equilibrium relationships for each of the streams
cut by the energy and material balance enclosures.

To illustrate this application of the © method, the absorber shown in
Fig. 2 is divided into two parts, and these parts are called Columns 1 and
2 as shown in Fig. 3. The solution to a typical absorber problem, Example
3, is to be found by obtaining the solution to the system of two columns
shown in Fig. 3.

To initiate the first trial on Column 1, the composition of V,,,, is

Vh IOI
]
COLUMN
!
M
Vel Ami
M+
COLUMN
2
N
Yn#L Ly

FiG. 3. Division of a single column into a system of two columns.
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assumed, and one or more trials are made on this absorber by use of the
0 method as described for absorbers. The new sets of temperatures and
flow rates so obtained are saved. The values of the /,,'s obtained by
the § method are used to make one or more trials on the second column,
and the temperatures and flow rates so obtained are saved. Prior to making
the next set of trials on each column, the ® method is applied in order to
find new sets of terminal flow rates {v,;}, {var+1.:}, {In:}, and {ly;}
which satisfy the material and energy balances enclosing each column as
well as the equilibrium relationships for each of the terminal streams.

In this application of the @ method to the system of two columns shown
in Fig. 3, two multipliers are defined:

Dy _ Iy
E B el[vli]ca (37)
Iy [ In; ]
=0 38
Um+1,i 2 UM+1,ilca 38

where the subscript ““co,” which was used previously to denote the cor-
rected values on the left-hand sides of these equations, has been omitted
in the interest of simplicity.

The @’s are to be picked such that the corrected component flow rates
satisfy the following component-material balances simultaneously:

Um+1,i = Uy — by = —1ly; (39)

Iyi — Um+1,i — Iy = “UNt1,i (40)

Use of Eqgs. (37) and (38) to restate Egs. (39) and (40) in terms of v,; and
Up+1.; gives the following result when stated as a matrix equation:

(L +r) 1 v | _| o ]
|: Ty -1+ ri,z):H:UM+1,t:| [UNH,;‘ “h)

lMi) ( lNi >
ri =® _— N ri == @ -
1 ! <v1i ca 2 2 DM+1,i ca

The energy balances enclosing Columns 1 and 2 depend upon ©,, ©,,
and the four temperatures, T, Ty, Tp 41, and Ty, of the terminal streams.
Thus the variables and functions of the ® method are:

x = [0,0,T Ty Tppr1 Tnl"
f= [9192"'96]T (42)

Of the six functions, four are based on the equilibrium relationships for
the terminal streams, and two are based on the energy balances enclosing
the respective columns. They are

where
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1 o Ui |
95 = L; K~(TM+1)] ‘ “3)

3 0ulH(T) = h(Ti)
gs = = -1
Z {loilh(Ty) — h(Ty)] + vy 1 AH (Ta41) — h(Tadl}

i=1

o

R

i

UM+1,i[Hi(TM+1) — hy(Ty)]
96 = ¢ 1 ~ 1
Z {heilhi(Tyy) — h(TY)] + oyay JH Ty 1) — BT}

The solution set of values of the variables x may be found by use of the
Newton-Raphson method. Then on the basis of the most recent set of
values of the variables, the second set of trials on Column 1 is made.
The results so obtained are used to initiate the second set of trials on
Column 2.

To illustrate the application of the methods described above, a
typical absorber example which had been solved by a formulation of the
Newton-Raphson method involving 2N variables (the 7'’s and the L,;/V;’s)
is presented as Example 4 in Tables 9 and 10. This example was selected
because it was one of the few absorber examples for which the 8 method
failed to converge. However, when this problem was solved as a system
of two columns with each column containing four plates as illustrated in
Fig. 3, convergence was obtained by use of the combination of the 8 and ©
methods as described above. It was found that four column trials by the
8 method per system trial tended to minimize the total computing time.
To determine additional characteristics of the 8 methods, several variations
of Example 4 were solved in which the number of plates was varied from
eight to twenty. Convergence was achieved by using from one to five plates
per column or unit. Because of the relatively small number of plates,
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TABLE 9

Statement of an Absorber Problem, Example 4

Rich gas, Lean oil,

Compo- UN+1,1 los
nent (Ib-mol/h)  (Ib-mol/h) Other specification

CO, 0.4703 0.0 To = 462.9°R, Ty,, = 460°R, N = 8, and
N, 0.1822 0.0 P = 800 psia. Initial temperature profile to
CH, 88.7000 0.0 be constant at 7, = 485°R for all j (1 =
C,;Hg 6.6747 0.0 J = N). The initial vapor rate profile is to be
C;H,g 2.7786 0.0015 constant at V; = 90.88 (1 =; < 8), and
i-C4H ;o 0.6375 0.0006 the liquid rates are L; = 63092 (1 £j =
n-C4H,o 0.3655 0.0013 7) and Lg = 15.42. Use the K values and
i-C,H,, 0.1158 0.0067 enthalpies given in Ref. 10
n-C5H12 0.0505 0.0061
CsH;4 0.0146 0.1495
C,H,s 0.0081 0.5736
CsHys 0.0020 1.8214
CoH,o 0.0 1.6866
CioH2, 0.0 2.0619

100.00 6.3092

Convergence Characteristics and Solution of Example 4

Trial no. 0, 0, T, T Tast Tn
Initial
values — 485.00 485.00 485.00 485.00

1.1494 1.0660 495.95 426.63 477.00 468.27

0.99535 0.99764 487.79 489.63 487.49 475.46
0.99860 0.99925 487.86 489.66 487.64 475.36
1.0001 1.0001 487.93 489.53 487.62 475.30

1
2 0.95466 0.97700 487.40 486.77 483.40 477.11
3 0.96293 0.98039 486.09 492.37 487.81 476.85
4 1.0063 1.0029 488.38 488.12 487.02 474.88
5 1.0006 1.0003 488.14 488.40 486.94 475.18
6
7
8

“Temperatures are in °R.

no significant speed advantage of the 6 methods over the 2N Newton-
Raphson method was realized in the solution of absorber problems. This
is a consequence of the fact that absorbers generally contain a relatively
small number of stages.

In conclusion, the # method may be used to solve a variety of additional
problems involving distiliation columns in which specifications other than
the reflux and distillate rates are made. Furthermore, the 8 method is
significantly faster than the Newton-Raphson methods for columns which
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TABLE 10

Solution of Example 4

I. Product Rates

Component vy Ini

CO, 0.34840 0.12190

N, 0.18037 0.19104 x 10-2
CH, 0.82841 x 102 0.58600 x 10!
C,H; 0.46875 x 10! 0.19872 x 10!
CsHg 0.67786 0.21022 x 10!
i-C4H,, 0.90314 x 10-2 0.62915
n-C,H,, 0.11957 x 10-2 0.36556
i-CsH,, 0.17761 x 10~2 0.12069
n-CsHy, 0.11812 x 10-2 0.55469 x 10-!
CeH, . 0.11098 x 10! 0.15298

C-H6 0.17115 x 10! 0.56458

CsH;s 0.10240 x 10! 0.16763 x 10!
CyoH;, 0.60846 x 102 0.20558 x 10!

Total 88.816 17.494

II. Temperatures and Vapor Rates

Temperature Total vapor rate
Stage no. T,(°R) V;
1 487.93 88.816
2 491.03 93.959
3 490.85 94,351
4 489.54 94.649
5 487.62 94.966
6 485.08 95.366
7 481.45 95.950
8 475.31 97.011

contain large numbers of components and plates. Although the § methods
may be used to solve absorber problems, no significant speed advantage
over the 2N Newton-Raphson method was realized. It is anticipated that
these new applications of the # methods will prove most useful because of
their desirable characteristics of speed and independence of the initial
values of the variables.
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SYMBOLS
b; molar flow of component i leaving in the bottom product stream
B
B total molar flow rate of the bottom product stream
d;  molar flow rate of component i in the distillate D
D total molar flow rate of the distillate
F  total molar flow rate of the feed
f  vector of variables
Jk the kth function of the mesh variables x
h(T) enthalpy of pure component / in the liquid phase at the tem-
perature T
H(T) enthalpy of pure component i in the vapor phase at the tem-
perature T
K; vapor-liquid equilibrium constant; y; = Kx,
l;;  molar flow rate of component i in the liquid leaving plate j
L; total molar flow rate of the liquid leaving plate j
P, ratio of the corrected to the calculated values of the product
rates for component i; see Eqs. (5) and (6)
Oc condenser duty
Or reboiler duty
¥ function of the calculated flow rates and the ©’s; defined
beneath Eq. (41)
vj molar flow rate of component i in the vapor phase leaving plate j
V; total molar flow rate of the vapor leaving the j stage
Ve flow rate of the vapor part of a partially vaporized feed
Xj; mole fraction of component ; in the liquid phase leaving stage j
X vector of the independent variables of the g functions; see Eqgs.
(7) and (42)
X, total mole fraction of component i in the feed
Vii mole fraction of component i in the vapor phase leaving stage j
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